یادگیری عمیق (Deep Learning) چیست؟

یادگیری عمیق
شبکه مقالات

یادگیری عمیق (Deep Learning) چیست؟

یادگیری عمیق از روش‌های یادگیری ماشین و هوش مصنوعی به شمار می‌رود که از روشی که ذهن انسان برای یادگیری موضوعات خاص به کار می‌گیرد، تقلید می‌کند. این نوع یادگیری از عناصر مهم علم داده (Data science) و شامل آمار، مدل‌سازی و پیش‌بینی است.

یادگیری عمیق برای دانشمندان داده که وظیفه جمع آوری، تجزیه و تحلیل و تفسیر مقادیر زیادی از داده‌ها و اطلاعات را بر عهده دارند، بسیار کارآمد و مفید است و این روندسریع‌تر و آسان‌تر می‌کند.برای اینکه بدانید یادگیری عمیق چیست و دقیقا چه کاربردی دارد، تا پایان این مقاله از تدریس24 همراه ما باشید.

یادگیری عمیق چیست؟

 

یادگیری عمیق (Deep Learning) بخشی از روش‌های یادگیری ماشین است که بر روش‌هایی تمرکز دارد که مبتنی بر شبکه‌های عصبی مصنوعی (Artificial neural network) هستند. یادگیری عمیق به رایانه‌ها می‌آموزد آنچه را که به طور طبیعی برای انسان انجام می‌شود، انجام دهند.

پاسخ دیگر به سوال یادگیری عمیق چیست، می‌تواند این باشد که یادگیری عمیق زیرمجموعه‌ای از یادگیری ماشین است که در آن از الگوریتم‌هایی استفاده می‌شود که مغز انسان را شبیه سازی می‌کند. این الگوریتم شبکه‌های عصبی مصنوعی نام دارند. شبکه‌های عصبی مصنوعی از پردازش اطلاعات و گره‌های ارتباطی توزیع شده در سیستم‌های بیولوژیکی الهام گرفته‌اند. می‌توان گفت شبکه‌های عصبی تمایل به حالت ایستا و نمادین دارند.

یادگیری عمیق

 

 

 

تاریخچه یادگیری عمیق چیست؟

 

مفهوم یادگیری عمیق به زبان ساده، برای اولین بار در سال 1980 به صورت یک استدلال نظری ارائه شد. اما این مفهوم به دو دلیل عمده، اکنون بیش از گذشته مورد توجه قرار گرفته و مفید واقع شده است. این دلایل عبارتند از:

Deep Learning به تعداد زیادی از داده‌ها نیازمند است. به عنوان مثال، برای توسعه خودروهای خودران، میلیون‌ها تصویر و هزاران ساعت ویدئو مورد نیاز است.

یادگیری عمیق به قدرت پردازشی بالایی نیاز دارد. واحدهای پردازنده گرافیکی قدرتمندی که در Deep Learning استفاده می‌شوند، هزینه زیادی دارند. در صورتی که این پردازنده‌ها با سیستم رایانش ابری همگام شوند، تیم‌های توسعه می‌توانند زمان آموزش یک شبکه یادگیری عمیق را از چند هفته‌ به چند ساعت‌ یا حتی کمتر کاهش دهند.

 

چرا یادگیری عمیق اهمیت دارد؟

 

یادگیری عمیق در حال حاضر یکی از مهمترین تکنولوژی هایی هستش که در ماشین های خودران استفاده میشه. این تکنولوژی امکان تشخیص یک تابلوی توقف یا درک تفاوت یک عابر پیاده از یک چراغ برق رو برای ماشین میسر می کنه.

دستگاه های مصرفی مثل گوشی های هوشمند، تبلت ها، تلویزیون ها و بلندگوها هم با استفاده از این تکنولوژی قابلیت کنترل صوتی رو در دسترس کاربران خودشون قرار میدن.

در یادگیری عمیق، یک مدل کامپیوتری به صورت مستقیم از طریق تصاویر، متن یا صدا یاد می گیره تا چطور طبقه بندی ها رو انجام بده. مدل های Deep Learning میتونن دقت فوق العاده بالایی داشته باشن و حتی در برخی سناریوها عملکردی بهتر از انسان رو نشون بدن.

این مدل ها با استفاده از مجموعه های وسیعی از داده های نشانه گذاری شده/نشده و معماری های شبکه عصبی با لایه های بسیار زیاد، آموزش داده میشن. به کارگیری یادگیری عمیق در صنایع مختلف مزایای زیادی رو به همراه داره. در حوزه ای کامرس (تجارت الکترونیک) یا کسب و کارهایی که خدماتشون رو آنلاین ارائه میدن، امکان شناخت نیازها، علایق و رفتارهای خرید مشتریان وجود داره.

کسب و کارها میتونن با ثبت و تفسیر احساسات و نظرات مشتریان، بهترین راهکارها و پیشنهادها رو به کاربران خودشون ارائه بدن و اینطوری روابط و ارتباطات بهتری داشته باشن. با استفاده از ابر داده و توانمندی های تحلیلی و تفسیری یادگیری عمیق، امکان پیش بینی ترندها و نیازها و در نتیجه ارائه گزینه های متناسب و پاسخ های شخصی سازی شده میسر میشه.

با استفاده از یادگیری عمیق میشه توانایی پیش بینی و دفاع از خود رو در حوزه امنیت سایبری ایجاد کرد. بهره وری بیشتر و کارایی بهتر با بهبود زمان های پاسخگویی میسر میشه.بدون شک هوش مصنوعی و یادگیری عمیق انقلاب های بعدی در حوزه تکنولوزی هستن و در آینده ای نزدیک، با استفاده از آنها دستاوردهای چشمگیری رو کسب می کنیم.

 

یادگیری عمیق چه تکنیک‌هایی دارد؟

 

تکنیک‌های یادگیری عمیق با استفاده از شبکه‌ی بزرگی از داده‌ها راه‌حل‌هایی را ارائه می‌دهند که هدفشان تبدیل جهان به مکانی کارآمد و ایمن است.

لیست زیر هرچند ذاتا بسیار پیچیده است، مروری کلی از محبوب‌ترین تکنیک‌های یادگیری عمیق را برای توسعه‌ی فرایند‌ها و حل بسیاری از مشکلات ارائه می‌دهد. در ادامه‌ی مطلب می‌خوانید تکنیک‌های یادگیری عمیق چیست.

  • شبکه‌های چندلایه‌ی پِرسِپترون (Multilayer Perceptron Networks)؛
  • شبکه‌های عصبی پیچشی (Convolutional Neural Networks)؛
  • شبکه‌های عصبی بازگشتی (Long Short-Term Memory Recurrent Neural Networks).

سازمان‌ها می‌توانند هنگام تصمیم گیری درمورد چگونگی بهبود محصولات، خدمات و وظایف خود و هم‌چنین تعیین هدفگذاری برای آینده، از این شبکه‌های عصبی پیشرفته استفاده کنند. در ادامه، توضیحات مفصل‌تری را درمورد این شبکه‌ها و یادگیری عمیق ارائه داده‌ایم.

  • شبکه‌های چندلایه‌ی پِرسِپترون (Perceptron)

پس از این که با یادگیری عمیق آشنا شدید به توضیحات دقیق‌تری درمورد شبکه‌ها و تکنیک‌های آن می‌پردازیم. این شبکه‌ها شامل لایه‌های بی‌شماری از نورون‌ها هستند که از جهت‌های مختلفی به یک‌دیگر متصل شده‌اند. این نورون‌ها از یک لایه به لایه‌ی دیگر کاملا با هم متصل‌اند؛ به طور دقیق‌تر، شبکه‌‌ی عصبی پیش‌خور نورون‌هایی دارد که توسط لایه‌های قبلی و بعدی به هم متصل شده‌اند.

 هر نورون درون شبکه دارای یک تابع فعال‌سازی است که خروجی آن نورون را بر اساس ورودی آن، دچار تغییر شکل می‌کند. توابع فعال‌سازی خطی و غیر‌خطی نورون در نهایت راه‌حل‌هایی را برای سازمان‌ها فراهم می‌کنند.

لایه‌های متعدد شبکه‌های عصبی عمیق با مسائلی مطابقت دارند که هدفشان حل هریک از آن‌هاست. وقتی توابع غیرخطی باشند، این شبکه‌ها می‌توانند از توابع پیچیده تقلید کنند. با ایجاد شبکه‌هایی از ورودی‌ها، خروجی‌ها، لایه‌ها، نورون‌های مختلف و توابع مختلف فعال‌سازی، امکان حل لیست بلندبالایی از مسائل بیش‌تر می‌شود. شایان ذکر است که با اضافه شدن هر نورون، پیچیدگی این فرایندها نیز افزایش می‌یابد.

  • شبکه‌های عصبی پیچشی (CNN)

شبکه بعدی در یادگیری عمیق، شبکه عصبی پیچشی است. این شبکه‌های عصبی عمیق، که به طور خاص با مواردی مانند طبقه‌بندی تصویر کار می‌کنند، از شبکه‌ی عصبی موجود در قشر بینایی مغز تقلید می‌کنند.

 در نتیجه، CNNها بینش ویژه‌ای را درمورد پردازش داده‌های خاص ارائه می‌دهند. CNNها شبکه‌هایی هستند که هنگام تجزیه‌ و تحلیل داده شامل تصاویر، فایل‌های صوتی و کلیپ‌های ویدئویی مورد استفاده قرار می‌گیرند. یک لایه ورودی و خروجی و هم‌چنین چندین لایه‌‌ی پنهان، ساختمان یک CNN را تشکیل می‌دهند.

  • شبکه‌های عصبی بازگشتی (LTSM)

این شبکه‌ها وابستگی دستور (order dependence) را در ارتباط با مسائل پیش‌بینی دنباله (sequence prediction problems) یاد می‌گیرند. ماهیت این شبکه‌ها پیچیده است و در ترجمه‌ی ماشینی، تشخیص گفتار و موارد دیگری استفاده می‌شوند. LSTMها برای حل تکالیف مختلف، مانند تراشه‌های حافظه‌ی کامپیوتر، با هم و به صورت لایه‌ به ‌لایه عمل می‌کنند.

دیدگاه خود را اینجا قرار دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

اعضا

‫بروز رسانی

سمیرا مردانی's بروزسانی مشخصات انجام شد 1 سال, ماه 2 قبل

محمد جواد محمدی's بروزسانی مشخصات انجام شد 1 سال, ماه 2 قبل

مریم نوری's بروزسانی مشخصات انجام شد 1 سال, ماه 2 قبل

محمد امین طاهری's بروزسانی مشخصات انجام شد 1 سال, ماه 2 قبل

نگار حجتی's بروزسانی مشخصات انجام شد 1 سال, ماه 2 قبل

فیلدهای نمایش داده شده را انتخاب کنید. دیگران مخفی خواهند شد. برای تنظیم مجدد سفارش ، بکشید و رها کنید.
  • عکس
  • شناسه محصول
  • امتیاز
  • قیمت
  • در انبار
  • موجودی
  • افزودن به سبد خرید
  • توضیحات
  • محتوا
  • عرض
  • اندازه
  • تنظیمات بیشتر
  • ویژگی ها
  • ویژگی های سفارشی
  • زمینه های دلخواه
برای پنهان کردن نوار مقایسه ، بیرون را کلیک کنید
مقایسه
مقایسه ×
Let's Compare! Continue shopping